Lower Energy

“Dissipated energy is minimized when FCV is used”
Prof. emer. Tom Barnes
Fellow of the Institute of Physics, London, UK
Conventional mechanical ventilation: A cause of lung damage
Ventilator-Induced Lung Injury (VILI)
- Is associated with high mortality rates on intensive care units (ICUs) 2,3
- Occurs frequently, even when ventilation is applied only for a few hours 4,5
- Mechanical ventilation applies energy to the respiratory system 8-14
- Excess energy is dissipated into the lungs, and a key factor for VILI 2,7-9
- Passive expiration is a source of dissipated energy 22-25
‘Lung-protective ventilation’ – current strategies
- Focus on optimizing inspiratory phase, leaving expiration uncontrolled
- Energy dissipation is not measured or displayed
- Based on standardized application of low tidal volumes: “One size fits all” 3,6
- Clinical benefits of low tidal volumes or PEEP in diverse patient populations still unclear 16-21
- Ideal ventilator should display energy dissipation, allowing ‘safe’ ventilation to be applied 10
FCV® minimizes energy dissipation in the lung
FCV® allows energetically optimized ventilation
In his lecture at Euroanaesthesia 2017, Prof. Dr. Dietmar Enk visualizes how various forms of mechanical ventilation affect the energy dissipated in the lungs. Using an artificial lung model, he simulates the continuous and smooth movement of gases into and out of the lungs of a patient ventilated with FCV®. Pressure peaks occurring with conventional ventilation strategies are avoided, resulting in energetically optimized ventilation. The FCV® concept, using prototypical versions of Evone and Tritube, has already been demonstrated at Euroanaesthesia 2015. Watch video.
Patient case demonstrates potential benefits of FCV® in ARDS

FCV® attenuated lung injury in porcine ARDS
FCV®– a new ventilation concept
- Controls expiration and prevents abrupt airway pressure drop
- Constant gas flow in combination with an I:E ratio of 1:1 minimizes energy dissipation 25
- Relies on accurately measured intratracheal pressures and inspiratory flows, allowing precise calculation of energy dissipation 26
- Hysteresis area of pressure-volume loops reflects the energy dissipated 26
- Has been applied clinically in more than 40 hospitals across 11 countries
FCV® by Evone
- Minimizes energy dissipation down to values reported for spontaneous breathing 25,26
- Results in lower energy dissipation as compared to general protocols for VCV and PCV 25,27
- Attenuates lung injury in porcine ARDS 27
- Has lung-protective potential 25-28
- Provides higher ventilation efficiency as compared to VCV, as evidenced by an improved oxygenation and better CO2 removal 27,28
References
- Lord J et al. The Systemic Immune Response to Trauma: An Overview of Pathophysiology and Treatment. The Lancet 2014 ;1455-465.
- Cressoni M et al. Mechanical Power and Development of Ventilator-induced Lung Injury. Anaesthesiology 2016;124(5):1100-8
- Brower R et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301-8
- Wolthuis E et al. Mechanical ventilation using non-injurious ventilation settings causes lung injury in the absence of pre-existing lung injury in healthy mice. Crit Care. 2009;13(1): R1
- Woods S et al. Kinetic profiling of in vivo lung cellular inflammatory responses to mechanical ventilation. Am J Physiol Lung Cell Mol Physiol 2015;308:L912–L921
- Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2014 Mar 6;370(10):980
- Marini JJ et al. Dissipation of energy during the respiratory cycle: conditional importance of ergotrauama to structural lung damage. Curr Opin Crit Care. 2018; 24(1):16-22
- Gattinoni L et al. New insights in mechanical ventilation. Med Klin Intensivmed Notfmed. 2018 Jan 9. EPub ahead of print
- Tonetti T et al. Volutrauma, Atelectrauma, and Mechanical Power. Crit Care Med. 2017;45(3):e327-e328
- Gattinoni L et al. Intensive care medicin in 2050: ventilator-induced lung injury. Intensive Care Med Published online: 22 March 2017
- Nieman GF. Lung stress, strain, and energy load: engineering concepts to understand the mechanism of ventilator-induced lung injury (VILI). Intensive Care Med Exp. 2016;4(1):16
- Tonetti T. Driving pressure and mechanical power: new targets for VILI prevention. Ann Transl Med. 2017;5(14):286
- Gattinoni L et al. Ventilator-related causes of lung injury: the mechanical power. Intesive Care Med. 2016;42(10):1567-1575
- Protti A et al. Lung anatomy, energy load, and ventilator-induced lung injury. Intensive Care Med Exp. 2015;3(1):34
- Marini J et al. A few of our favorite unconfirmed ideas. Crit Care. 2015;19(Suppl 3): S1
- Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, Schoenfeld D, Thompson BT; National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351(4):327-36
- Meade MO, Cook DJ, Guyatt GH, Slutsky AS, Arabi YM, Cooper DJ, Davies AR, Hand LE, Zhou Q, Thabane L, Austin P, Lapinsky S, Baxter A, Russell J, Skrobik Y, Ronco JJ, Stewart TE; Lung Open Ventilation Study Investigators. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299(6):637-45
- Mercat A, Richard JC, Vielle B, Jaber S, Osman D, Diehl JL, Lefrant JY, Prat G, Richecoeur J, Nieszkowska A, Gervais C, Baudot J, Bouadma L, Brochard L; Expiratory Pressure (Express) Study Group. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299(6):646-55
- Kacmarek RM, Villar J, Sulemanji D, Montiel R, Ferrando C, Blanco J, Koh Y, Soler JA, Martinez D, Hernández M, Tucci M, Borges JB, Lubillo S, Santos A, Araujo JB, Amato MB, Suárez-Sipmann F; Open Lung Approach Network. Open Lung Approach for the Acute Respiratory Distress Syndrome: A Pilot, Randomized Controlled Trial. Crit Care Med. 2016;44(1):32-42
- Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, Gattinoni L, van Haren F, Larsson A, McAuley DF, Ranieri M, Rubenfeld G, Thompson BT, Wrigge H, Slutsky AS, Pesenti A; LUNG SAFE Investigators; ESICM Trials Group. Epidemiology, Patterns of Care. and Mortality for Patients with Acute Respiratory Distress Syndrome in Intensive Care Unites in 50 Countries. JAMA. 2016 Feb 23;315(8):788-800. doi: 10.1001/jama.2016.0291.
- PReVENT Investigators, Simonis FD, Serpa Neto A, Binnekade JM, Braber A, Bruin KCM, Determann RM, Goekoop GJ, Heidt J, Horn J, Innemee G, de Jonge E, Juffermans NP, Spronk PE, Steuten LM, Tuinman PR, de Wilde RBP, Vriends M, Gama de Abreu M, Pelosi P, Schultz MJ.Effect of a Low vs Intermediate Tidal Volume Strategy on Ventilator-Free Days in Intensive Care Unit Patients Without ARDS: A Randomized Clinical Trial.JAMA. 2018 Nov 13;320(18):1872-1880
- Marini JJ, Gattinoni L. Protecting the Ventilated Lung: Vascular Surge and Deflation Energetics. Am J Respir Crit Care Med. 2018 Nov 1;198(9):1112-1114
- Katira BH, Engelberts D, Otulakowski G, Giesinger RE, Yoshida T, Post M, Kuebler WM, Connelly KA, Kavanagh BP. Abrupt Deflation after Sustained Inflation Causes Lung Injury. Am J Respir Crit Care Med. 2018 Nov 1;198(9):1165-1176
- Goebel U, Haberstroh J, Foerster K, Dassow C, Priebe HJ, Guttmann J, Schumann Flow-controlled expiration: a novel ventilation mode to attenuate experimental porcine lung injury. Br J Anaesth. 2014 Sep;113(3):474-83. doi: 10.1093/bja/aeu058. Epub 2014 Apr 2. PubMed PMID: 24694683
- Barnes T, van Asseldonk D, Enk D. Minimisation of dissipated energy in the airways during mechanical ventilation by using constant inspiratory and expiratory flows – flow controlled ventilation. Medical Hypotheses 2018 Dec;121:167-176
- Barnes T, Enk D. Ventilation for low dissipated energy achieved using flow control during both inspiration and expiration. Trends in Anaesthesia and Critical Care 2018, Trends in Anaesthesia and Critical Care 24 (2019); 5-12
- Schmidt J, Wenzel C, Spassov S, Wirth S, Schumann S. Expiratory Ventilation Assistance during mandatory ventilation in porcine ARDS improves arterial oxygenation – a randomised controlled animal study [Abstract]. Eur J Anaesthesiol 2018; 35 e-supplement 56: 7
- Schmidt J, Wenzel C, Mahn M, Spassov S, Schmitz HC, Borgmann S, Lin Z, Haberstroh J, Meckel S, Eiden S, Wirth S, Buerkle H, Schumann S. Improved lung recruitment and oxygenation during mandatory ventilation with a new expiratory ventilation assistance device: A controlled interventional trial in healthy pigs. Eur J Anaesthesiol. 2018 Oct 35(10):736-744
OUR Mission:
Let’s redefine ventilation.
Together, we question, we create, we care, we educate, we celebrate
Patient ventilation with minimal impact and maximal control
We are VENTINOVA.
Please sign up for our press mailings
LATEST NEWS
Symposium organized by Erasmus Medical Center
Erasmus Medical Center (Rotterdam, the Netherlands) is organizing a hybrid symposium on Flow Controlled Ventilation blowing away VILI.The event will be held on the 28th of October in Rotterdam but can also be watched online.For more information click...
SIGN UP FOR OUR NEWSLETTER:
CONTACT US
Ventinova Medical
Meerenakkerplein 7
5652 BJ Eindhoven (NL)
T. +31 649 998 203
T. +34 944 008 847 ( IES Medical )
Chamber of Commerce: 58307834